Shape 2: Vertices

This unit focuses on drawing lines and shapes from sequences of vertices.

Syntax introduced:
beginShape(), endShape(), vertex()
curveVertex(), bezierVertex()

The geometric primitives introduced in Shape 1 provide extraordinary visual potential,
but a programmer may often desire more complex shapes. Fortunately, there are many
ways to define visual form with software. This unit introduces a way to define shapes

as a series of coordinates, called vertices. A vertex is a position defined by an x- and
y-coordinate. A line has two vertices, a triangle has three, a quadrilateral has four, and so
on. Organic shapes such as blobs or the outline of a leaf are constructed by positioning
many vertices in spatial patterns:

.
.

. »

Yesets

These shapes are simple compared to the possibilities. In contemporary video games,
for example, highly realistic characters and environmental elements may be made up
of more than 15,000 vertices. They represent more advanced uses of this technique, but
they are created using similar principles.

Vertex

To create a shape from vertex points, first use the beginShape () function, then
specify a series of points with the vertex() function and complete the shape with
endShape().The beginShape() and endShape () functions must always be used
in pairs. The vertex () function has two parameters to define the x-coordinate and
y-coordinate:

vertex(x, y)

By default, all shapes drawn with the vertex() function are filled white and have a
black outline connecting all points except the first and last. The fi11(), stroke(),
noFill(),noStroke(),and strokeWeight () functions control the attributes of

shapes drawn with the vertex () function, just as they do for those drawn with the

shape functions discussed in Shape 1 (p. 23). To close the shape, use the CLOSE constant
as a parameter for endShape().

69

The order of the vertex positions changes the way the shape is drawn. The following
example uses the same vertex positions as code 7-01, but the order of the third and

noFill();
beginShape();
vertex(30, 20);
vertex(85, 20);
vertex(85, 75);
vertex(30, 75);
endShape();

noFill();
beginShape();
vertex(30, 20);
vertex(85, 20);
vertex(85, 75);
vertex(30, 75);
endShape(CLOSE);

fourth points are reversed.

Adding more vertex points reveals more of the potential of these functions. The
following examples show variations of turning off the fill and stroke attributes and
embedding vertex() functions within a for structure.

70

noFill();
beginShape();
vertex(30, 20);
vertex(85, 20);
vertex(30, 75);
vertex(85, 75);
endShape();

fill(0);
noStroke();
smooth();
beginShape();
vertex(10, 0);
vertex (100, 30);
vertex(90, 70);
vertex (100, 70);
vertex(10, 90);
vertex(50, 40);
endShape();

Shape 2: Vertices

7-01

7-02

7-03

noFill(); 7-05
smooth();
strokeWeight(20);
beginShape();
vertex(52, 29);
vertex(74, 35);
vertex(60, 52);
vertex(61, 75);
vertex(40, 69);
vertex(19, 75);
endShape();

noStroke(); 7-06
fill(0);
beginShape();
vertex(40, 10);
for (int i = 20; i <= 100; 1 += 5) {
vertex(20, i);
vertex(30, i);
}
vertex(40, 100);
endShape();

A shape can have thousands of vertex points, but drawing too many points can slow
down your programs.

Points, Lines

The beginShape () function can accept different parameters to define what to draw
from the vertex data. The same points can be used to create a series of points, an
unfilled shape, or a continuous line. The parameters POINTS and LINES are used to
create different configurations of points and lines from the coordinates defined in the
vertex() functions. Remember to type these parameters in uppercase letters because
Processing is case-sensitive (p. 20).

// Draws a point at each vertex 7-07
beginShape(POINTS);

vertex(30, 20);

vertex(85, 20);

vertex(85, 75);

vertex(30, 75);

endShape();

71 Shape 2: Vertices

// Draws a line between each pair of vertices 7-C
beginShape (LINES);

vertex(30, 20);

vertex(85, 20);

vertex(85, 75);

vertex(30, 75);

endShape();

Shapes

Use the parameters TRIANGLES, TRIANGLE STRIP, TRIANGLE_FAN,QUADS, and
QUAD_STRIP with beginShape() to create other kinds of shapes. It's important to be
aware of the spatial order of the vertex points when using these parameters because
they affect how a shape is rendered. If the order required for each parameter is not
followed, the expected shape will not draw. It’s easy to change between working with
TRIANGLES and a TRIANGLE STRIP because the vertices can remain in the same
spatial order, but this is not the case for changing between QUADS and a QUAD STRIP.
Refer to the examples below and the facing diagram for more information.

// Connects each grouping of three vertices as a triangle 7-C

Ty beginShape (TRIANGLES);
‘::::7 vertex(75, 30);

vertex(10, 20);
vertex(75, 50);
vertex(20, 60);
vertex(90, 70);
vertex(35, 85);
endShape();

// Starting with the third vertex, connects each T
// subsequent vertex to the previous two

beginShape(TRIANGLE STRIP);

vertex(75, 30);

vertex(10, 20);

vertex(75, 50);

vertex(20, 60);

vertex(90, 70);

vertex(35, 85);

endShape();

72 Shape 2: Vertices

vi
b V2
v4 L
v3
POINTS
V2 Va Ve
vi V3 ovs
TRIANGLES
Vs oy, V3
vi Y% Ve
TRIANGLES
Vi vs
v4
v3
v2 V6
QUADS
va Vs
\E]
V4
v2 V6
QUADS

<

i

LINES

V2 Vs V6

W

vi V3 s

TRIANGLE STRIP

V2 g3 V6

V4

vi V5

TRIANGLE_STRIP

V1 Vs
v3 v7
\: Va4 E;: V8
v2 V6
QUAD_STRIP
Vi Vs
V4 v8
; V3 i v7
V2 3

QUAD_STRIP

Parameters for beginShape ()
There are eight options for the MODE parameter of the beginShape () function, and each interprets vertex data in a
different way. The notation V1, V2, V3, etc., represents the order and position of each vertex point.

73 Shape 2: Vertices

Vi
v3
v2
v4
LINES
V2 v3 V4
Vs
V1,V6

TRIANGLE_FAN

V2 V4

Va,vé
32 v3

TRIANGLE_FAN

POINTS, LINES

The same data can be interpreted
as a sequence of points or lines.
The spatial order of the points
affects what is drawn when using
LINES.

TRIANGLES, TRIANGLE_FAN,
TRIANGLE STRIP

Groups of three vertices are
drawn as individual triangles or a
connected group.

Unexpected results occur if the
defined order is not followed.

QUADS, QUAD_STRIP
Groups of four vertices are

drawn as individual quads or

a connected group. The spatial
order determines whether a quad
ora “bow” is drawn. Note that the
order is reversed for QUADS and
QUAD_STRIP.

beginShape (TRIANGLE _FAN); 7-11
vertex(10, 20);

vertex(75, 30);

vertex(75, 50);

vertex(90, 70);

vertex(10, 20);

endShape();

beginShape (QUADS); 7-12
vertex(30, 25);

vertex(85, 30);

vertex(85, 50);

vertex(30, 45);

vertex(30, 60);

vertex(85, 65);

vertex(85, 85);

vertex(30, 80);

endShape();

// Notice the different vertex order for 7-18
// this example in relation to example 7-12
beginShape(QUAD STRIP);

vertex(30, 25);

vertex(85, 30);

vertex(30, 45);

vertex(85, 50);

vertex(30, 60);

vertex(85, 65);

vertex(30, 80);

vertex(85, 85);

endShape();

Curves

The vertex () function works well for drawing straight lines, but if you want to create
shapes made of curves, the two functions curveVertex() and bezierVertex()
can be used to connect points with curves. These functions can be run between
beginShape() and endShape() only when beginShape () has no parameter.

The curveVertex() function is used to set a series of points that connect with a
curve. It has two parameters that set the x-coordinate and y-coordinate of the vertex.

curveVertex(x, y)

The first and last curveVertex () within a beginShape() and endShape() act as

74 Shape 2: Vertices

control points, setting the curvature for the beginning and end of the line. The curvature
for each segment of the curve is calculated from each pair of points in consideration of
points before and after. Therefore, there must be at least four curveVertex() functions
within beginShape() and endShape () to draw a segment.

smooth();

noFill();

beginShape();

curveVertex (20, 80); // C1 (see p.76)
curveVertex (20, 40); // Vi
curveVertex (30, 30); // V2
curveVertex(40, 80); // V3
curveVertex(80, 80); // C2
endShape();

Each bezierVertex() defines the position of two control points and one anchor point
of a Bézier curve:

bezierVertex(cx1, cyl, cx2, cy2, X, y)

The first time bezierVertex() is used within beginShape (), it must be prefaced
with vertex() to set the first anchor point. The line is drawn between the point defined
by vertex() and the point defined by the x and y parameters to bezierVertex().
The first four parameters to the function position the control points to define the shape
of the curve. The curve from code 2-21 (p. 30) was converted to this technique to yield the
following example:

nofFill();

beginShape();

vertex(32, 20); // V1 (see p.76)
bezierVertex(80, 5, 80, 75, 30, 75); // C1, C2, V2
endShape();

Long, continuous curves can be made with bezierVertex(). After the first vertex()
and bezierVertex(), each subsequent call to the function continues the shape by
connecting each new point to the previous point.

smooth();

noFill();

beginShape();

vertex(15, 30); // V1 (see p.76)
bezierVertex(20, -5, 70, 5, 40, 35); // C1, C2, V2
bezierVertex(5, 70, 45, 105, 70, 70); // C3, C4, V3
endShape();

75 Shape 2: Vertices

C1 Curve vertices

b V1 v2 The curveVertex() function
c, Vi defines coordinates that are
R connected with curved shapes.
- Voo e s The first and last points are control
V3 a a, v3 points that define the shape of the

curve at the end and beginning.

V3 'z

WS %
I'd o vs o2

1 V6
T V2
Vi
. Bézier vertices
va V1 c1 C2e ok
Bézier curves are defined by vertex
Vi points and control points used as
- \ea ’ arameters to the bezierVertex
ters to the b Vert
\ £ function. The control points define
V2 c2 V2
Vi % the shape of the curves that are
drawn between the vertex points.
a
.
1 vi, a1
2
Vi <
2 v3
> V2
3
b .
o 3,v2
C4,v3
*Ca
;G2
€1,v1,V3
3,v2
o4
Curves

These curves are converted to software with the vertex(), curveVertex(),and bezierVertex() functions.
The notation Vo, V1, V2, etc., represents the order and position of each vertex point, and the notation Ci, C2, C3, etc,,
represents the control points. Some of these curves are translated to software in codes 7-14 to 7-18.

76 Shape 2: Vertices

To make a sharp turn, use the same position to specify the vertex and the following
control point. To close the shape, use the same position to specify the first and last
vertex.

smooth(); 7-17
noStroke();

beginShape();

vertex(90, 39); // V1 (see p.76)
bezierVertex(90, 39, 54, 17, 26, 83); // C1, C2, V2
bezierVertex(26, 83, 90, 107, 90, 39); // C3, C4, V3
endShape();

Place the vertex () function within bezierVertex() functions to break the sequence
of curves and draw a straight line.

smooth(); 7-18
noFill();

beginShape();

vertex(15, 40); // V1 (see p.76)
bezierVertex(5, 0, 80, 0, 50, 55); // C1, C2, V2
vertex(30, 45); // V3

vertex(25, 75); // V4

bezierVertex(50, 70, 75, 90, 80, 70); // C3, Caq, V5
endShape();

A good technique for creating complex shapes with beginShape () and endShape()
is to draw them first in a vector drawing program such as Inkscape or Illustrator. The
coordinates can be read as numbers in this environment and then used in Processing.
Another strategy for drawing intricate shapes is to create them in a vector-drawing
program and then import the coordinates as a file. Processing includes a simple library
for reading SVG files. Other libraries that support more formats and greater complexity
can be found on the Processing website at www.processing.org/reference/libraries.

Exercises

1. UsebeginShape () to draw a shape of your own design.

2. Use different parameters for beginShape () to change the way a series of vertices
are drawn.

3. Draw a complex curved shape of your own design using bezierVertex().

