Structure 3: Functions

This unit introduces basic concepts and syntax for writing functions.

Syntax introduced:
void, return

A function is a self-contained programming module. You've been using the functions
included with Processing such as size(),1line(), stroke(),and translate() to
write your programs, but it’s also possible to write your own functions that make a
program modular. Functions make redundant code more concise by extracting the
common elements and making them into code blocks that can be run many times
within the program. This makes the code easier to read and update and reduces the
chance of errors.

Functions often have parameters to define their actions. For example, the 1ine()
function has four parameters that define the position of the two points. Changing the
numbers used as parameters changes the position of the line. Functions can operate
differently depending on the number of parameters used. For example, a single
parameter to the fi11 () function defines a gray value, two parameters define a gray
value with transparency, and three parameters define an RGB color.

A function can be imagined as a box with mechanisms inside that act on data.
There is typically an input into the box and code inside that utilizes the input to produce
an output:

For example, a function can be written to add 10 to any number or to multiply
two numbers:

2 -30 1024
Add 10
12 -20 1034
2 3 5 -4 A=
Multiply
\\
6 -20 1

181

The previous function examples are simple, but the concept can be extended to other
processes that may be less obvious:

0O ss° * 2
Rotate * Scale * ?nvert E
image

The mathematics used inside functions can be daunting, but the beauty of using
functions is that it’s not necessary to understand how they work. It's usually enough to
know how to use them—to know what the inputs are and how they affect the output.
This technique of ignoring the details of a process is called abstraction. It helps place the
focus on the overall design of the program rather than the details.

Abstraction

In the terminology of software, the word abstraction has a different meaning from how
it's used to refer to drawings and paintings. It refers to hiding details in order to focus on
the result. The interface of the wheel and pedals in a car allows the driver to ignore
details of the car’s operation such as firing pistons and the flow of gasoline. The only
understanding required by the person driving is that the steering wheel turns the
vehicle left and right, the accelerator speeds it up, and the brake slows it down. Ignoring
the minute details of the engine allows the driver to maintain focus on the task at hand.
The mind need not be cluttered with thoughts about the details of execution.

The idea of abstraction can also be discussed in relation to the human body. For
example, we can control our breathing, but we usually breathe involuntarily, without
conscious thought. Imagine if we had to directly control every aspect of our body. Having
to continually control the beating of the heart, the release of chemicals, and the firing of
neurons would make reading books and writing software impossible. The brain
abstracts the basic functions of maintaining the body so our conscious minds can
consider other aspects of life.

The idea of abstraction is essential to writing software. In Processing, drawing
functions such as 1ine(),ellipse(),and fill() obscure the complexity of their
actions so that the author can focus on results rather than implementation. If you want
to draw a line, you probably want to think only about its position, thickness, and color,
and you don’t want to think about the many lines of code that run behind the scenes to
convert the line into a sequence of pixels.

182 Structure 3: Functions

Creating functions

Before explaining in detail how to write your own functions, we'll first look at an
example of why you might want to do so. The following examples show how to make a
program shorter and more modular by adding a function. This makes the code easier to
read, modify, and expand.

It's common to draw the same shape to the screen many times. We've created the
shape you see below on the left, and now we want to draw it to the screen in the pattern
on the right:

We start by drawing it once, to make sure our code is working.
void setup() { 21-01
0 size (100, 100);
noStroke();
smooth();
noLoop();

}

void draw() {
fi11(255);
ellipse(50, 50, 60, 60); // White circle
f111(0);
ellipse(50+10, 50, 30, 30); // Black circle
fi1l(255);
ellipse(50+16, 45, 6, 6); // Small, white circle

The previous program presents a sensible way to draw the shape once, but when another
shape is added, we see a trend that continues for each additional shape. Adding a second
shape inside draw() doubles the amount of code. Because it takes 6 lines to draw each
shape, we now have 12 lines. Drawing our desired pattern that uses 6 shapes will require
36 lines of code. Imagine if we wanted to draw 30 eyes—the code inside draw() would
bloat to 180 lines.

183 Structure 3: Functions

void setup() {
size(100, 100);
noStroke();
smooth();
noLoop();

}

void draw() {
// Right shape
£i11(255);
ellipse(65, 44, 60, 60);
fill(o0);
ellipse(75, 44, 30, 30);
£il1(255);
ellipse(81, 39, 6, 6);
// Left shape
£111(255);
ellipse(20, 50, 60, 60);
fil1(0);
ellipse(30, 50, 30, 30);
£111(255);
ellipse(36, 45, 6, 6);

Because the shapes are identical, a function can be written for drawing them. The
function introduced in the next example has two inputs that set the x-coordinate and y-
coordinate. The lines of code inside the function render the elements for one shape.

void setup() {

‘ 0 size(100, 100);

noStroke();
smooth();
noLoop();

void draw() {
eye(65, 44);
eye(20, 50);

}

void eye(int x,
£i11(255);
ellipse(x, vy,
£111(0);

184 Structure 3: Functions

int y) {

60, 60);

21-02

21-03

ellipse(x+10, y, 30, 30); 21-03
J cont.
£il1(255);
ellipse(x+16, y-5, 6, 6);

}

The function is 8 lines of code, but it only has to be written once. The code in the function
runs each time it is referenced in draw(). Using this strategy, it would be possible to
draw 30 eyes with only 38 lines of code.

A closer look at the flow of this program reveals how functions work and affect the
program flow. Each time the function is used within draw(), the 6 lines of code inside
the function block are run. The normal flow of the program is diverted by the function
call, the code inside the function is run, and then the program returns to read the next
line in draw(). Because noLoop() is used inside setup(), the lines of code in draw()
only run once.

size(100, 100)
noStroke()
smooth()
notoop()
ellipse(65, 44, 60, 60)
fill(o)
ellipse(75, 44, 30, 30)
fil1(255)
ellipse(81, 39, 6, 6)
ellipse(20, 50, 60, 60)
fill(o)
ellipse(30, 50, 30, 30)
fill(255)

ellipse(36, 45, 6, 6)
.. . Programends

Enter draw(), divert to the eye function

Back to draw(), divert to the eye function a second time

Now that the function is working, it can be used each time we want to draw that shape.
If we want to use the shape in another program, we can copy and paste the function. We
no longer need to think about how the shape is being drawn or what each line of code
inside the function does. We only need to remember how to control its position with the
two parameters.

185 Structure 3: Functions

void setup() { 21-04
size(100, 100);
noStroke();
smooth();
noLoop();

void draw() {
eye(65, 44);
eye(20, 50);
eye(65, 74);
eye(20, 80);
eye(65, 104);
eye(20, 110);

}

void eye(int x, int y) {
£i11(255);
ellipse(x, y, 60, 60);
£il11(0);
ellipse(x+10, y, 30, 30);
£i11(255);
ellipse(x+16, y-5, 6, 6);

To write a function, start with a clear idea about what the function will do. Does it draw
a specific shape? Calculate a number? Filter an image? After you know what the function
will do, think about the parameters and the data type for each. Have a goal and break
the goal into small steps.

In the following example, we first put together a program to explore some of the
details of the function before writing it. Then, we start to build the function, adding one
parameter at a time and testing the code at each step.

void setup() { 21-05
size (100, 100);
smooth();
noLoop();

}

void draw() {
// Draw thick, light gray X
stroke(160);
strokeWeight(20);
line(0, 5, 60, 65);

186 Structure 3: Functions

line(60, 5, 0, 65);
// Draw medium, black X
stroke(0);
strokeWeight(10);
line(30, 20, 90, 80);
line(90, 20, 30, 80);
// Draw thin, white X
stroke(255);
strokeWeight(2);
line(20, 38, 80, 98);
line(80, 38, 20, 98);

To write a function to draw the three X's in the previous example, first write a function
to draw just one. We named the function drawX() to make its purpose clear. Inside, we
have written code that draws a light gray X in the upper-left corner. Because this
function has no parameters, it will always draw the same X each time its code is run. The
keyword void appears before the function’s name, which means the function does not
return a value.

void setup() {
size(100, 100);
smooth();
noLoop();

¥

void draw() A
drawx();
}

void drawx() {
// Draw thick, light gray X
stroke(160);
strokeWeight(20);
line(o, 5, 60, 65);
line(60, 5, 0, 65);

187 Structure 3: Functions

21-05
cont.

21-06

To draw the X differently, add a parameter. In the next example the gray parameter
variable has been added to the function to control the gray value of the X. The parameter
variable must include its type and its name. When the function is called from within
draw(), the value within the parentheses to the right of the function name is assigned
to gray. In this example, the value o is assigned to gray, so the stroke is set to black.

void setup() { 21-07
size(100, 100);
smooth();
i noLoop();
}

void draw() {
drawX(0); // Passes 0 to drawX(), runs drawX()

IR

void drawX(int gféy) { // Declares and assigns gray
stroke(gray); // Uses gray to set the stroke
strokeWeight(20);

line(o, 5, 60, 65);
line(60, 5, 0, 65);

A function can have more than one parameter. Each parameter for the function must be
placed between the parentheses after the function name, each must state its data type,
and the parameters must be separated by commas. In this example, the additional
parameter weight is added to control the thickness of the line.

void setup() { 21-08
size(100, 100);
smooth();
noLoop();

}

void draw() {
drawx(0, 30); // Passes values to drawX(), runs drawX()

}

void drawX(int gray, int weight) {
stroke(gray);
strokeWeight(weight);
line(0, 5, 60, 65);
line(60, 5, 0, 65);

188 Structure 3: Functions

The next example extends drawX() to three additional parameters that control the
position and size of the X drawn with the function.

void setup() { 21-09
size(100, 100);
smooth();
noLoop();

}

void draw() {
drawX(0, 30, 40, 30, 36);
}

void drawX(int gray, int weight, int x, int y, int size) {
stroke(gray);
strokeWeight(weight);
line(x, y, x+size, y+size);
line(x+size, y, x, y+size);

By carefully building our function one step at a time, we have reached the original goal
of writing a general function for drawing the three X’s in code 21-05 (p.186).

void setup() { 21-10
size(100, 100);
smooth();
noLoop();

¥

void draw() {
drawx (160, 20, 0, 5, 60); // Draw thick, light gray X
drawx(o, 10, 30, 20, 60); // Draw medium, black X
drawX(255, 2, 20, 38, 60); // Draw thin, white X

¥

void drawX(int gray, int weight, int x, int y, int size) {
stroke(gray);
strokeWeight(weight);
line(x, y, x+size, y+size);
line(x+size, y, x, y+size);

189 Structure 3: Functions

Now that we have the drawX () function, it'’s possible to write programs that would not
be practical without it. For example, putting calls to drawX () inside a for structure
allows for many repetitions. Each X drawn can be different from those previously drawn.

void setup() { 21-11
size(100, 100);
smooth();
noLoop();
}
void draw() {
for (int 1 = 0; 1 < 20; i++) {
drawX(200- i*10, (20-1)*2, i, i/2, 70);
b
3
void drawX(int gray, int weight, int x, int y, int size) {
stroke(gray);
strokeWeight(weight);
line(x, y, x+size, y+size);
line(x+size, y, x, y+size);
¥
21-12

void setup() {
size(100, 100);
smooth();
noLoop()

}

void draw() {
for (int i = 0; i < 70; i++) { // Draw 70 X shapes
drawX(int(random(255)), int(random(30)),
int(random(width)), int(random(height)), 100);

void drawX(int gray, int weight, int x, int y, int size) {
stroke(gray);
strokeWeight(weight);
line(x, y, x+size, y+size);
line(x+size, y, x, y+size);

}

190 Structure 3: Functions

In the next series of examples, a leaf () function is created from code 7-17 (p. 77) to draw
aleaf shape, and a vine () function is created to arrange a group of leaves onto a line.
These examples demonstrate how functions can run inside other functions. The leaf()
function has four parameters that determine the position, size, and orientation:

float x X-coordinate

float y Y-coordinate

float size Width of the leaf in pixels

int dir Direction, either 1 (left) or -1 (right)

This simple program draws one leaf and shows how the parameters affect its attributes.

void setup() {
size(100, 100);
smooth();
noStroke();
noLoop();

void draw() {
leaf(26, 83, 60, 1);

}

void leaf(int x, int y, int size, int dir) {
pushMatrix();
translate(x, y); // Move to position
scale(size); // Scale to size
beginShape(); // Draw the shape

vertex(1.0*dir, -0.7);

bezierVertex(1.0*dir, -0.7, 0.4*dir, -1.0, 0.0, 0.0);
bezierVertex(0.0, 0.0, 1.0*dir, 0.4, 1.0*dir, -0.7);
endShape();

popMatrix();

The vine () function has parameters to set the position, the number of leaves, and the
size of each leaf:

int x X-coordinate
int numleaves Total number of leaves on the vine
float leafSize Width of the leaf in pixels

This function determines the form of the vine by applying a few rules to the parameter
values. The code inside vine () first draws a white vertical line, then determines the

191 Structure 3: Functions

21-13

space between each leaf based on the height of the display window and the total
number of leaves. The first leaf is set to draw to the right of the vine, and the for
structure draws the number of leaves specified by the numLeaves parameter. The
x parameter determines the position, and leafSize sets the size of each leaf. The
y-coordinate of each leaf is slightly different each time the program is run because
of the random() function.

void setup() {
size(100, 100);
smooth();
noLoop();

}

void draw() {
vine(33, 9, 16);
¥

void vine(int x, int numlLeaves, int leafSize) {

stroke(255);

line(x, 0, x, height);

noStroke();

int gap = height / numLeaves;

int direction = 1;

for (int i = 0; i < numLeaves; i++) {
int r = int(xrandom(gap));
leaf(x, gap*i + r, leafSize, direction);
direction = -direction;

// Copy and paste the leaf() function here

The vine () function was written in steps and was gradually refined to its present code.

It could be extended with more parameters to control other aspects of the vine such as
the color, or to draw on a curve instead of a straight line. In these examples, the vine
function is called from draw() and the qualities of the vine are set by different
parameters.

Shorter programs aren’t the only benefit of using functions, but less code has
advantages beyond a reduction in typing. Shorter programs lead to fewer errors—the
more lines of code, the more chances for mistakes.

Imagine a novel written as a continuous paragraph without indentations or line
breaks. Functions act as paragraphs that make your program easier to read. The practice
of reducing complex processes into smaller, easier-to-comprehend units helps structure

192 Structure 3: Functions

21-14

Math 2: Curves

This unit introduces drawing curves with mathematical equations.

Syntax introduced:
sa(), sqrt(), pow(), norm(), lerp(), map()

Basic mathematical equations can be used to draw shapes to the screen and modify their
attributes. These equations augment the drawing functions discussed in Shape 1 (p. 23)
and Shape 2 (p. 69). They can control movement and the way elements respond to the
cursor. This math is used to accelerate and decelerate shapes in motion and move objects
along curved paths.

Exponents, Roots

The sq() function is used to square a number and return the result. The result is always
a positive number, because multiplying two negative numbers yields a positive result.
For example, -1 * -1 = 1. This function has one parameter:

sq(value)

The value parameter can be any number. When sq() is used, the result can be assigned
to a variable:

float a = sq(1); // Assign 1 to a: Equivalent to 1 * 1 8-01
float b = sq(-5); // Assign 25 to b: Equivalent to -5 * -5
float ¢ sq(9); // Assign 81 to c: Equivalent to 9 * 9

it

The sqrt () function is used to calculate the square root of a number and return the
result. It is the opposite of sq(). The square root of a number is always positive, even
though there may be a valid negative root. The square root s of number a satisfies the
equation s * s = a. This function has one parameter which must be a positive number:

sqrt(value)

Asin the sq() function, the value parameter can be any number, and when the function
is used the result can be assigned to a variable:

float a = sqrt(6561); // Assign 81 to a 8-02
float b = sqrt(625); // Assign 25 to b
float ¢ = sqrt(1); // Assign 1 to c¢

79

The pow() function calculates a number raised to an exponent. It has two parameters:
pow(num, exponent)

The num parameter is the number to multiply, and the exponent parameter is the
number of times to make the calculation. The following example shows how it is used:

float a = pow(1, 3); // Assign 1.0 to a: Equivalent to 1*1%*1 8-03
float b = pow(3, 4); // Assign 81.0 to b: Equivalent to 3*3%3*3

float ¢ = pow(3, -2); // Assign 0.11 to c: Equivalent to 1 / 3*3

float d = pow(-3, 3); // Assign -27.0 to d: Equivalent to -3*-3*-3

Any number (except o) raised to the zero power equals 1. Any number raised to the
power of one equals itself.

float a = pow(8, 0); // Assign 1 to a 8-04
float b = pow(3, 1); // Assign 3 to b
float ¢ = pow(4, 1); // Assign 4 to c

Normalizing, Mapping

Numbers are often converted to the range 0.0 to 1.0 for making calculations. This is
called normalizing the values. When numbers between 0.0 and 1.0 are multiplied
‘together, the result is never less than 0.0 or greater than 1.0. This allows any number
to be multiplied by another or by itself many times without leaving this range. For
example, multiplying the value o.2 by itself 5 times (0.2 * 0.2 * 0.2 * 0.2 * 0.2) produces
the result 0.00032. Because normalized numbers have a decimal point, all calculations
should be made with the float data type.

To normalize a number, divide it by the maximum value that it represents. For
example, to normalize a series of values between 0.0 and 255.0, divide each by 255.0:

Initial value Calculation Normalized value
0.0 0.0 / 255.0 0.0
102.0 102.0 / 255.0 0.4
255.0 255.0 / 255.0 1.0

This can also be accomplished via the norm(') function. It has three parameters:
norm(value, low, high)

The number used as the value parameter is converted to a value between 0.0 and 1.0.
The Iow and high parameters set the respective minimum and maximum values of the

80 Math 2: Curves

number's current range. If value is outside the range, the result may be less than o or
greater than 1. The following example shows how to use the function to make the same
calculations as the above table.

float x = norm(0.0, 0.0, 255.0); // Assign 0.0 to x
float y = norm(102.0, 0.0, 255.0); // Assign 0.4 to y
float z norm(255.0, 0.0, 255.0); // Assign 1.0 to z

After normalization, a number can be converted to another range through arithmetic.
For example, to convert numbers between 0.0 and 1.0 in a range between 0.0 and 500.0,
multiply by 500.0. To put numbers between 0.0 and 1.0 to numbers between 200.0

and 250.0, multiply by 5o then add 200. The following table presents a few sample
conversions. The parentheses are used to improve readability:

Initial range of x Desired range of x Conversion

0.0 to 1.0 0.0 to 255.0 X * 255.0

0.0 to 1.0 -1.0 to 1.0 (x*.2.0).- 1.0
0.0 to 1.0 -20.0 to 60.0 (x * 80.0) - 20.0

The lerp() function can be used to accomplish these calculations. The name “lerp” is
a contraction for “linear interpolation.” The function has three parameters:

lerp(valuei, value2, amt)

The valuel and value?2 parameters define the minimum and maximum values

and the amt parameter defines the value to interpolate between the values. The amt
parameter should always be a value between 0.0 and 1.0. The following example shows
how to use lerp() to make the value conversions on the last line of the previous table.

float x = lerp(-20.0, 60.0, 0.0); // Assign -20.0 to x
float y = lerp(-20.0, 60.0, 0.5); // Assign 20.0 to y
float z = lerp(-20.0, 60.0, 1.0); // Assign 60.0 to z

The map () function is useful to convert directly from one range of numbers to another.
It has five parameters.

map(value, lowi, highi, low2, high2)

The value parameter is the number to re-map. Similar to the norm function, the Iow1
and low2 parameters are the minimum and maximum values of the number's current
range. The Iow2 and high2 parameters are the minimum and maximum values for
the new range. The next example shows how to use map () to convert values from the
range o to 255 into the range -1to 1. This is the same as first normalizing the value, then
multiplying and adding to move it from the range o to 1into the range -1 to 1.

81 Math 2: Curves

82

X—

0.0 0.2 0.4 0.6 0.8 1.0
L L

Y o.0 ==
l o2 N T
{1 B0 1) 1 0 I
0.4 + N+
0.6
0.8 ‘
1.0 ‘
y =X
- 1
| it
T :4__4
| ¢ 1|
y = 1-x
|
AR
y = (1-x)
Vi T

y = 1-(1-x)
i L1
y ="
Exponential equations

Each of these curves shows the relationship between x and y determined by an equation. The linear
equations in the left column are contrasted with exponential curves to the right. Codes 8-08 and
8-09 demonstrate how to translate these curves into code.

Math 2: Cuzrves

float x = map(20.0, 0.0, 255.0, -1.0, 1.0); // Assign -0.84 to x 8-07
float y = map(0.0, 0.0, 255.0, -1.0, 1.0); // Assign -1.0 to y
float z map(255.0, 0.0, 255.0, -1.0, 1.0); // Assign 1.0 to z

Simple curves

Exponential functions are useful for creating simple curves. Normalized values are used
with the pow() function to produce exponentially increasing or decreasing numbers
that never exceed the value 1. These equations have the form:

y =x"
where the value of x is between 0.0 and 1.0 and the value of n is any integer. In these
equations, as the x value increases linearly the resulting y value increases exponentially.
When continuously plotted, these numbers produce this diagram:

X—
X Y 0.0 0.2 0.4 0.6 0.8 1.0
0.0 0.0 i
0.2 0.0016
0.4 0.0256
0.6 0.1296
0.8 0.4096
1.0 1.0

y = x4

The following example shows how to put this equation into code. It iterates over
numbers from o to 100 and normalizes the values before making the curve calculation.

e for (int x = 0; x < 100; x++) { 8-08
= float n = norm(x, 0.0, 100.0); // Range 0.0 to 1.0
float y = pow(n, 4); // Calculate curve
y *= 100; // Range 0.0 to 100.0
point(x, y);

}

Other curves can be created by changing the parameters to pow() in line 3.

for (int x = 0; x < 100; x++) { 8-09
float n = norm(x, 0.0, 100.0); // Range 0.0 to 1.0
float y = pow(n, 0.4); // Calculate curve
y *= 100; // Range 0.0 to 100.0
point(x, y);

}

83 Math 2: Curves

The following three examples demonstrate how the same curve is used to draw different
shapes and patterns.

// Draw circles at points along the curve y = x"4 8-10
noFill();
smooth();
for (int x = 0; x < 100; x += 5) {
float n = norm(x, 0.0, 100.0); // Range 0.0 to 1.0
float y = pow(n, 4); // Calculate curve
y *= 100; // Scale y to range 0.0 to 100.0
strokeWeight(n * 5); // Increase thickness
ellipse(x, y, 120, 120);

// points on a curve y = x4 from x in range -1.0 to 1.0
for (int x = 5; x < 100; x += 5) {

float n = map(x, 5, 95, -1, 1);

float p = pow(n, 4);

float ypos = lerp(20, 80, p);

line(x, 0, x, ypos);

}

I““HWHH””‘ // Draw a line from the top of the display window to 8-11

// Create a gradient from y = x and y = x4 8-12
for (int x = 0; x < 100; x++) {

float n = norm(x, 0.0, 100.0); // Range 0.0 to 1.0

float val = n * 255.0;

stroke(val);

line(x, 0, x, 50); // Draw top gradient

float valSquare = pow(n, 4) * 255.0;

stroke(valSquare);

line(x, 50, x, 100); // Draw bottom gradient

Exponential curves are used in this unit to generate form, but code 23-06 and 31-o9 in
subsequent units demonstrate their use to control motion and response.

Exercises
1. Draw the curve y = 1- x4 to the display window.
2. Use the data from the curve y = x8 to draw something unique.
3. Compose a range of gradients created from curves.

84 Math 2: Curves

